
Calculus AB

3-1

Extrema on an Interval

Extrema-

	min	max
[a,b]		
[b,c]		
[c,d]		
[a,c]		
[b,d]		
[a,d]		
(a,b)		
(b,c)		
(c,d)		
(a,d)		
all Reals		

Extreme Value Theorem-

Critical Point-

Theorem-

Find any critical numbers of the function. (pg 169)

12)
$$g(x) = x^4 - 4x^2$$

Assignment:
Pg. 169
11-35 odd,
39, 41, 43,
54, 57-60

Locate the absolute extrema of the function on the closed interval.

20)
$$h(x) = -x^2 + 3x - 5$$
, on [-2, 1]

34)
$$f(x) = \tan(\frac{\pi x}{8})$$
, on [0, 2]

61) The formula for the power output P of a battery is $P = VI - RI^2$ where V is the electromotive force in volts, R is the resistance, and I is the current. Find the current (measured in amperes) that corresponds to a maximum value of P in a battery for which V = 12 volts and R = 0.5 ohms. Assume that a 15-amp fuse bounds the output in the interval for I of [0,15]. Could the power output be increased by replacing the 15-amp fuse with a 20 amp fuse?